Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 22240, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782676

RESUMO

Ergothioneine (EGT) is a low molecular weight histidine betaine essential in all domains of life but only synthesized by selected few organisms. Synthesis of EGT by Mycobacterium tuberculosis (M. tb) is critical for maintaining bioenergetic homeostasis and protecting the bacterium from alkylating agents, oxidative stress, and anti-tubercular drugs. EgtD, an S-adenosylmethionine-dependent methyltransferase (AdoMet), catalyzes the trimethylation of L-Histidine to initiate EGT biosynthesis and this reaction has been shown to be essential for EGT production in mycobacteria and for long-term infection of murine macrophages by M. tb. In this work, library screening and structure-guided strategies identified multiple classes of M. tb EgtD inhibitors that bind in various regions of the enzyme active site. X-ray crystal structures of EgtD-inhibitor complexes confirm that L-Histidine analogs bind solely to the L-Histidine binding site while drug-like inhibitors, such as TGX-221, and S-Glycyl-H-1152 span both the L-Histidine and AdoMet binding sites. These enzyme-inhibitor complexes provide detailed structural information of compound scaffolds useful for developing more potent inhibitors that could shorten Tuberculosis treatment regimens by weakening important bacterial defenses.


Assuntos
Antituberculosos/química , Betaína/análogos & derivados , Sítios de Ligação , Vias Biossintéticas/efeitos dos fármacos , Ergotioneína/química , Histidina/análogos & derivados , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Betaína/química , Betaína/metabolismo , Relação Dose-Resposta a Droga , Ergotioneína/biossíntese , Histidina/química , Histidina/metabolismo , Histidina/farmacologia , Conformação Molecular , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Relação Estrutura-Atividade
2.
Microb Cell Fact ; 19(1): 164, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811496

RESUMO

BACKGROUND: Ergothioneine (EGT) has a unique antioxidant ability and diverse beneficial effects on human health. But the content of EGT is very low in its natural producing organisms such as Mycobacterium smegmatis and mushrooms. Therefore, it is necessary to highly efficient heterologous production of EGT in food-grade yeasts such as Saccharomyces cerevisiae. RESULTS: Two EGT biosynthetic genes were cloned from the mushroom Grifola frondosa and successfully heterologously expressed in Saccharomyces cerevisiae EC1118 strain in this study. By optimization of the fermentation conditions of the engineered strain S. cerevisiae EC1118, the 11.80 mg/L of EGT production was obtained. With daily addition of 1% glycerol to the culture medium in the fermentation process, the EGT production of the engineered strain S. cerevisiae EC1118 can reach up to 20.61 mg/L. CONCLUSION: A successful EGT de novo biosynthetic system of S. cerevisiae containing only two genes from mushroom Grifola frondosa was developed in this study. This system provides promising prospects for the large scales production of EGT for human health.


Assuntos
Agaricales/genética , Ergotioneína/biossíntese , Glicerol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/química , Ergotioneína/química , Fermentação , Regulação Bacteriana da Expressão Gênica , Genes Fúngicos , Microbiologia Industrial , Microrganismos Geneticamente Modificados
3.
Chembiochem ; 21(20): 2908-2911, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32614492

RESUMO

Ergothioneine has emerged as a crucial cytoprotectant in the pathogenic lifestyle of Mycobacterium tuberculosis. Production of this antioxidant from primary metabolites may be regulated by phosphorylation of Thr213 in the active site of the methyltransferase EgtD. The structure of mycobacterial EgtD suggests that this post-translational modification would require a large-scale change in conformation to make the active-site residue accessible to a protein kinase. In this report, we show that, under in vitro conditions, EgtD is not a substrate of protein kinase PknD.


Assuntos
Ergotioneína/biossíntese , Metiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Ergotioneína/química , Metiltransferases/química , Modelos Moleculares , Conformação Molecular , Proteínas Quinases/metabolismo , Especificidade por Substrato
4.
Curr Opin Struct Biol ; 65: 1-8, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408082

RESUMO

Ergothioneine is a sulfur-containing histidine derivative synthesized by many bacteria and most fungi but it also finds its way into human tissue by way of specific absorption from the diet. The precise role of ergothioneine is not yet known but there is growing evidence that it plays a role as an antioxidant protecting human cells from oxidative stress and pathogenic bacteria from host defenses. In this review we highlight recent advances in understanding the structural basis of ergothioneine biosynthesis. In addition to unusual carbon-sulfur bond forming enzymology this research has revealed that ergothioneine biosynthesis has emerged at least three times by independent molecular evolution.


Assuntos
Enzimas/química , Ergotioneína/biossíntese , Histidina/metabolismo , Humanos
5.
J Agric Food Chem ; 68(23): 6390-6394, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32436380

RESUMO

We previously constructed a heterologous production system for ergothioneine (ERG) in Escherichia coli using five ERG biosynthesis genes (egtABCDE) from Mycobacterium smegmatis. However, significant amounts of hercynine (HER), an intermediate of ERG, as ERG were accumulated, suggesting that the reaction of EgtB catalyzing the attachment of γ-glutamylcysteine (γGC) to HER to yield hercynyl-γ-glutamylcysteine sulfoxide was a bottleneck. In this study, we searched for other EgtBs and found many egtB orthologs in diverse microorganisms. Among these, Methylobacterium strains possessed EgtBs that catalyze the direct conversion of HER into hercynylcysteine sulfoxide with l-cysteine (l-Cys) as a sulfur donor, in a manner similar to those of acidobacterial CthEgtB and fungal Egt1. An in vitro study with recombinant EgtBs from Methylobacterium brachiatum and Methylobacterium pseudosasicola clearly showed that both enzymes accepted l-Cys but not γGC. We reconstituted the ERG production system in E. coli with egtB from M. pseudosasicola; ERG productivity reached 657 mg L-1.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Methylobacterium/enzimologia , Sulfóxidos/metabolismo , Proteínas de Bactérias/metabolismo , Betaína/análogos & derivados , Betaína/metabolismo , Vias Biossintéticas , Dipeptídeos/metabolismo , Ergotioneína/biossíntese , Histidina/análogos & derivados , Histidina/metabolismo , Engenharia Metabólica , Methylobacterium/genética
6.
Proc Biol Sci ; 286(1916): 20191812, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31771466

RESUMO

Sulfoxide synthases are enzymes involved in the biosynthesis of small sulfur-containing natural products. Their enzymatic activity represents a unique sulfur transfer strategy in nature that is the insertion of a sulfur atom on the imidazole ring of histidine. To date, only two enzymes are known to carry out this function: the sulfoxide synthase EgtB, involved in the biosynthesis of ergothioneine in fungi and bacteria, and the 5-histidylcysteine sulfoxide synthase OvoA, involved in the biosynthesis of ovothiols, found in the eggs and biological fluids of marine invertebrates, some proteobacteria and protists. In particular, ovothiols, thanks to their unique redox properties, are probably the most intriguing marine sulfur-containing molecules. Although they have long been considered as cellular protective molecules, new evidence suggest that their biological activities and ecological role might be more complex than originally thought. Here, we investigate the evolutionary history of OvoA in Metazoa, reporting its monophyletic ancient origins, which could be traced back to the latest common ancestor of Choanozoa. Nevertheless, we show that OvoA is missing in several major extant taxa and we discuss this patchy distribution in the light of the massive genome reduction events documented in Metazoa. We also highlight two interesting cases of secondary acquisition through horizontal gene transfer, which occurred in hydrozoans and bdelloid rotifers. The evolutionary success of this metabolic pathway is probably ascribable to its role in the maintenance of cellular redox homeostasis, which enables organisms to survive in different environmental niches.


Assuntos
Evolução Biológica , Sulfóxidos/metabolismo , Animais , Bactérias/enzimologia , Ergotioneína/biossíntese , Ergotioneína/metabolismo , Fungos/enzimologia , Transferência Genética Horizontal , Metilistidinas
7.
Metab Eng ; 56: 97-110, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513889

RESUMO

The conversion of sterols to steroid synthons by engineered mycobacteria comprises one of the basic ways for the production of steroid medications in the pharmaceutical industry. Here, we revealed that high amounts of reactive oxygen species (ROS) generate during the conversion process of sterols, which impairs the cell viability of mycobacterial cells and thus hinders the conversion of sterols to steroid synthons. Accordingly, the endogenous antioxidants for detoxifying ROS in mycobacteria, ROS scavenging enzymes and low molecular weight thiols, were examined. The results revealed that three antioxidants, catalase (CAT), mycothiol (MSH), and ergothioneine (EGT), demonstrated efficacy toward neutralizing the excessive ROS produced during sterol metabolism. CAT overexpression or MSH or EGT augmentation enhanced the conversion of phytosterols to 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) by 18.9%, 23.8%, and 32.1%, respectively, and also enhanced the cell viability, indicating the benefits of these antioxidants in reducing ROS-induced stress. Further combinatorial augmentation of CAT, MSH, and EGT demonstrated enhanced effects toward intracellular ROS scavenging, resulting in 54.2% greater cell viability and 47.5% enhancement in 4-HBC production. These findings indicated that the excessive ROS induces cell stress, in turn limiting the conversion of sterols, whereas neutralization of the excessive ROS by combined control of CAT, MSH, and EGT serves as an effective strategy to boost the conversion productivity of sterols to steroid synthons.


Assuntos
Cisteína , Ergotioneína , Glicopeptídeos , Inositol , Engenharia Metabólica , Mycobacteriaceae , Espécies Reativas de Oxigênio/metabolismo , Esteróis/metabolismo , Cisteína/biossíntese , Cisteína/genética , Ergotioneína/biossíntese , Ergotioneína/genética , Glicopeptídeos/biossíntese , Glicopeptídeos/genética , Inositol/biossíntese , Inositol/genética , Mycobacteriaceae/genética , Mycobacteriaceae/metabolismo
8.
J Am Chem Soc ; 141(17): 6906-6914, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30943021

RESUMO

Ergothioneine is an emergent factor in cellular redox biochemistry in humans and pathogenic bacteria. Broad consensus has formed around the idea that ergothioneine protects cells against reactive oxygen species. The recent discovery that anaerobic microorganisms make the same metabolite using oxygen-independent chemistry indicates that ergothioneine also plays physiological roles under anoxic conditions. In this report, we describe the crystal structure of the anaerobic ergothioneine biosynthetic enzyme EanB from green sulfur bacterium Chlorobium limicola. This enzyme catalyzes the oxidative sulfurization of N-α-trimethyl histidine. On the basis of structural and kinetic evidence, we describe the catalytic mechanism of this unusual C-S bond-forming reaction. Significant active-site conservation among distant EanB homologues suggests that the oxidative sulfurization of heterocyclic substrates may occur in a broad range of bacteria.


Assuntos
Biocatálise , Ergotioneína/biossíntese , Sulfurtransferases/química , Domínio Catalítico/genética , Chlorobium/enzimologia , Cristalografia por Raios X , Cinética , Modelos Químicos , Mutagênese Sítio-Dirigida , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
9.
J Am Chem Soc ; 141(13): 5275-5285, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883103

RESUMO

Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon-sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.


Assuntos
Acidobacteria/enzimologia , Ergotioneína/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Oxigênio/metabolismo , Sítios de Ligação , Biocatálise , Ergotioneína/química , Estrutura Molecular , Oxirredução , Oxigênio/química
10.
Sci Rep ; 9(1): 1895, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760790

RESUMO

Ergothioneine (ERG), a unique thiol compound, is suggested to function as an antioxidant and cytoprotectant. Despite several recent attempts to produce ERG using various organisms, its yield was still very low and the costs remained high. Since the level of ERG produced depends strictly on the availability of three distinct precursor amino acids (L-cysteine (Cys), L-histidine, and L-methionine (Met)), metabolic engineering for enhancement of the flux toward ERG biosynthesis is required. Herein, we took advantage of a high-Cys production system using Escherichia coli cells, in which Cys biosynthesis and excretion were activated, and applied it to the fermentative production of ERG from glucose. The Cys overproduction in E. coli cells carrying the egtBCDE genes from Mycobacterium smegmatis was effective for ERG production. Furthermore, coexpression of the egtA gene, which encodes γ-glutamylcysteine synthetase that synthesizes the γ-glutamylcysteine used as a sulfur source of ERG biosynthesis, enhanced ERG production even though E. coli intrinsically has γ-glutamylcysteine synthetase. Additionally, disruption of the metJ gene that encodes the transcriptional repressor involved in Met metabolism was effective in further increasing the production of ERG. Finally, we succeeded in the high-level production of 1.31 g/L ERG in a fed-batch culture process using a jar fermenter.


Assuntos
Cisteína/biossíntese , Ergotioneína/biossíntese , Escherichia coli/metabolismo , Apoproteínas/genética , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes , Proteínas de Escherichia coli/genética , Glucose/metabolismo , Glutamato-Cisteína Ligase/genética , Histidina/metabolismo , Engenharia Metabólica , Metionina/metabolismo , Mycobacterium smegmatis/genética , Proteínas Repressoras/genética
11.
Biosci Biotechnol Biochem ; 83(1): 181-184, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30286703

RESUMO

To establish a reliable and practical ergothioneine (ERG) supply, we employed fermentative ERG production using Aspergillus oryzae, a fungus used for food production. We heterologously overexpressed the egt-1 and -2 genes of Neurospora crassa in A. oryzae and succeeded in producing ERG (231.0 mg/kg of media, which was 20 times higher than the wild type). Abbreviations: ERG: ergothioneine; HER: hercynine; Cys-HER: hercynylcysteine-sulfoxide; SAM: S-adenosylmethionine; SAH: S-adenosylhomocysteine; l-His: l-histidine; l-Cys: l-cysteine; LC-ESI-MS: liquid chromatography-electrospray ionization-mass spectrometry.


Assuntos
Aspergillus oryzae/metabolismo , Ergotioneína/biossíntese , Antioxidantes/metabolismo , Cromatografia Líquida , Ergotioneína/genética , Fermentação , Genes Fúngicos , Neurospora crassa/genética , Espectrometria de Massas por Ionização por Electrospray
12.
J Biomed Sci ; 25(1): 55, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30001196

RESUMO

BACKGROUND: Three low molecular weight thiols are synthesized by Mycobacterium tuberculosis (M.tb), namely ergothioneine (ERG), mycothiol (MSH) and gamma-glutamylcysteine (GGC). They are able to counteract reactive oxygen species (ROS) and/or reactive nitrogen species (RNS). In addition, the production of ERG is elevated in the MSH-deficient M.tb mutant, while the production of MSH is elevated in the ERG-deficient mutants. Furthermore, the production of GGC is elevated in the MSH-deficient mutant and the ERG-deficient mutants. The propensity of one thiol to be elevated in the absence of the other prompted further investigations into their interplay in M.tb. METHODS: To achieve that, we generated two M.tb mutants that are unable to produce ERG nor MSH but are able to produce a moderate (ΔegtD-mshA) or significantly high (ΔegtB-mshA) amount of GGC relative to the wild-type strain. In addition, we generated an M.tb mutant that is unable to produce GGC nor MSH but is able to produce a significantly low level of ERG (ΔegtA-mshA) relative to the wild-type strain. The susceptibilities of these mutants to various in vitro and ex vivo stress conditions were investigated and compared. RESULTS: The ΔegtA-mshA mutant was the most susceptible to cellular stress relative to its parent single mutant strains (ΔegtA and ∆mshA) and the other double mutants. In addition, it displayed a growth-defect in vitro, in mouse and human macrophages suggesting; that the complete inhibition of ERG, MSH and GGC biosynthesis is deleterious for the growth of M.tb. CONCLUSIONS: This study indicates that ERG, MSH and GGC are able to compensate for each other to maximize the protection and ensure the fitness of M.tb. This study therefore suggests that the most effective strategy to target thiol biosynthesis for anti-tuberculosis drug development would be the simultaneous inhibition of the biosynthesis of ERG, MSH and GGC.


Assuntos
Cisteína/biossíntese , Dipeptídeos/biossíntese , Ergotioneína/biossíntese , Glicopeptídeos/biossíntese , Inositol/biossíntese , Tuberculose/microbiologia , Animais , Cisteína/antagonistas & inibidores , Cisteína/genética , Dipeptídeos/antagonistas & inibidores , Dipeptídeos/genética , Ergotioneína/antagonistas & inibidores , Ergotioneína/genética , Glicopeptídeos/antagonistas & inibidores , Glicopeptídeos/genética , Humanos , Inositol/antagonistas & inibidores , Inositol/genética , Camundongos , Peso Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/genética , Tuberculose/patologia
13.
J Biosci Bioeng ; 126(6): 715-722, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29910189

RESUMO

Ergothioneine (EGT) is a sulfur-containing, anti-oxidative amino acid derived from histidine. EGT is synthesized in bacteria and fungi but not in animals and plants, and is now recognized as important for human health. Its cost-effective fermentative production has not been elucidated due to the lack of information for productive microorganisms. In this study, we doubled the gene copy for EGT synthesis and deleted the histidine ammonia-lyase gene in a potent EGT-producing methylotrophic bacterium Methylobacterium aquaticum strain 22A, and optimized its culture conditions, resulting in increased EGT production of 7.0 mg EGT/g dry cell weight and 100 µg EGT/5 mL/7 days. In addition, through screening we found EGT-producing eukaryotic strains of Aureobasidium pullulans and Rhodotorula mucilaginosa, which can produce 1.0 and 3.2 mg EGT/g dry cell weight, 70 and 120 µg EGT/5 mL/7 days, respectively. This study proposes practical uses of potent EGT-producing recombinant Methylobacterium species and non-recombinant yeast and fungal strains.


Assuntos
Ergotioneína/biossíntese , Fungos/metabolismo , Methylobacterium/metabolismo , Leveduras/metabolismo , Animais , Antioxidantes/metabolismo , Fungos/genética , Histidina/metabolismo , Humanos , Engenharia Metabólica , Metanol/metabolismo , Methylobacterium/genética , Organismos Geneticamente Modificados , Oxirredução , Rhodotorula/genética , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Leveduras/genética
14.
ACS Chem Biol ; 13(5): 1333-1342, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29658702

RESUMO

Ergothioneine is an emerging factor in cellular redox homeostasis in bacteria, fungi, plants, and animals. Reports that ergothioneine biosynthesis may be important for the pathogenicity of bacteria and fungi raise the question as to how this pathway is regulated and whether the corresponding enzymes may be therapeutic targets. The first step in ergothioneine biosynthesis is catalyzed by the methyltransferase EgtD that converts histidine into N-α-trimethylhistidine. This report examines the kinetic, thermodynamic and structural basis for substrate, product, and inhibitor binding by EgtD from Mycobacterium smegmatis. This study reveals an unprecedented substrate binding mechanism and a fine-tuned affinity landscape as determinants for product specificity and product inhibition. Both properties are evolved features that optimize the function of EgtD in the context of cellular ergothioneine production. On the basis of these findings, we developed a series of simple histidine derivatives that inhibit methyltransferase activity at low micromolar concentrations. Crystal structures of inhibited complexes validate this structure- and mechanism-based design strategy.


Assuntos
Ergotioneína/biossíntese , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Catálise , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Histidina/análogos & derivados , Histidina/farmacologia , Metiltransferases/química , Mycobacterium smegmatis/enzimologia , Conformação Proteica , Especificidade por Substrato
15.
Biochemistry ; 57(24): 3309-3325, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29589901

RESUMO

As one of the most abundant elements on earth, sulfur is part of many small molecular metabolites and is key to their biological activities. Over the past few decades, some general strategies have been discovered for the incorporation of sulfur into natural products. In this review, we summarize recent efforts in elucidating the biosynthetic details for two sulfur-containing metabolites, ergothioneine and ovothiol. Their biosyntheses involve an unprecedented trans-sulfur strategy, a combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation reaction and a PLP enzyme-mediated C-S lyase reaction.


Assuntos
Produtos Biológicos/metabolismo , Ergotioneína/biossíntese , Metilistidinas/metabolismo , Enxofre/metabolismo , Produtos Biológicos/química , Ergotioneína/química , Metilistidinas/química , Conformação Molecular , Enxofre/química
16.
J Agric Food Chem ; 66(5): 1191-1196, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29276826

RESUMO

Ergothioneine (ERG) is a histidine-derived thiol compound suggested to function as an antioxidant and cytoprotectant in humans. Therefore, experimental trials have been conducted applying ERG from mushrooms in dietary supplements and as a cosmetic additive. However, this method of producing ERG is expensive; therefore, alternative methods for ERG supply are required. Five Mycobacterium smegmatis genes, egtABCDE, have been confirmed to be responsible for ERG biosynthesis. This enabled us to develop practical fermentative ERG production by microorganisms. In this study, we carried out heterologous and high-level production of ERG in Escherichia coli using the egt genes from M. smegmatis. By high production of each of the Egt enzymes and elimination of bottlenecks in the substrate supply, we succeeded in constructing a production system that yielded 24 mg/L (104 µM) secreted ERG.


Assuntos
Ergotioneína/biossíntese , Escherichia coli/metabolismo , Antioxidantes , Citoproteção , Escherichia coli/genética , Fermentação , Técnicas de Transferência de Genes , Mycobacterium smegmatis/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Transfecção
17.
Chembiochem ; 18(21): 2115-2118, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28862368

RESUMO

Biosynthesis of N-α-trimethyl-2-thiohistidine (ergothioneine) is a frequent trait in cyanobacteria. This sulfur compound may provide essential relief from oxidative stress related to oxygenic photosynthesis. The central steps in ergothioneine biosynthesis are catalyzed by a histidine methyltransferase and an iron-dependent sulfoxide synthase. In this report, we present evidence that some cyanobacteria recruited and adapted a sulfoxide synthase from a different biosynthetic pathway to make ergothioneine. The discovery of a second origin of ergothioneine production underscores the physiological importance of this metabolite and highlights the evolutionary malleability of the thiohistidine biosynthetic machinery.


Assuntos
Cianobactérias/metabolismo , Ergotioneína/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Ergotioneína/química , Modelos Moleculares
18.
Inorg Chem ; 56(6): 3589-3599, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28277674

RESUMO

EgtB is a nonheme iron enzyme catalyzing the C-S bond formation between γ-glutamyl cysteine (γGC) and N-α-trimethyl histidine (TMH) in the ergothioneine biosynthesis. Density functional calculations were performed to elucidate and delineate the reaction mechanism of this enzyme. Two different mechanisms were considered, depending on whether the sulfoxidation or the S-C bond formation takes place first. The calculations suggest that the S-O bond formation occurs first between the thiolate and the ferric superoxide, followed by homolytic O-O bond cleavage, very similar to the case of cysteine dioxygenase. Subsequently, proton transfer from a second-shell residue Tyr377 to the newly generated iron-oxo moiety takes place, which is followed by proton transfer from the TMH imidazole to Tyr377, facilitated by two crystallographically observed water molecules. Next, the S-C bond is formed between γGC and TMH, followed by proton transfer from the imidazole CH moiety to Tyr377, which was calculated to be the rate-limiting step for the whole reaction, with a barrier of 17.9 kcal/mol in the quintet state. The calculated barrier for the rate-limiting step agrees quite well with experimental kinetic data. Finally, this proton is transferred back to the imidazole nitrogen to form the product. The alternative thiyl radical attack mechanism has a very high barrier, being 25.8 kcal/mol, ruling out this possibility.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Teoria Quântica , Cristalografia por Raios X , Ergotioneína/biossíntese , Ergotioneína/química , Modelos Moleculares , Estrutura Molecular
19.
Sci Rep ; 6: 35306, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748436

RESUMO

Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and ß-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis.


Assuntos
Aspergillus fumigatus/metabolismo , Ergotioneína/biossíntese , Proteínas Fúngicas/metabolismo , Antioxidantes/química , Aspergillus fumigatus/genética , Carbono-Oxigênio Liases/metabolismo , Compostos Férricos/química , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Teste de Complementação Genética , Gliotoxina/química , Glutationa/metabolismo , Histidina/química , Peróxido de Hidrogênio/química , Ácidos Hidroxâmicos/química , Liases/metabolismo , Metais Pesados/química , Oxirredução , Estresse Oxidativo , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Sideróforos/química , Vitamina K 3/química
20.
Mol Microbiol ; 100(1): 15-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26713511

RESUMO

Using genetics and metabolomics we investigated the synthesis (gshA and gshB genes) and catabolism (ggt) of the conserved antioxidant glutathione in the model cyanobacterium Synechocystis PCC6803. These three genes are crucial to Synechocystis, in agreement with the proposed invention of glutathione by ancient cyanobacteria to protect themselves against the toxicity of oxygen they produced through photosynthesis. Consistent with their indispensability, gshA and gshB also operate in the production of another antioxidant, ergothioneine, as well as of the glutathione analogues ophthalmate and norophthalmate. Furthermore, we show that glutathione, ophthalmate and norophthalmate are accumulated in cells stressed by glucose, and that the two glutathione-dependent glyoxalase enzymes operate in the protection against glucose and its catabolite methylglyoxal. These findings are interesting because ophthalmate and norophthalmate were observed only in mammals so far, where ophthalmate is regarded as a biomarker of glutathione depletion. Instead, our data suggest that ophthalmate and norophthalmate are stress-induced markers of cysteine depletion triggered by its accelerated incorporation into glutathione, to face its increased demand for detoxification purposes. Hence, Synechocystis is an attractive model for the analysis of the role of glutathione, ergothioneine, ophthalmate and norophthalmate, in signalling and detoxification of oxidants and metabolic by-products.


Assuntos
Cianobactérias/metabolismo , Inativação Metabólica , Estresse Oxidativo , Transdução de Sinais , Vias Biossintéticas , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Ergotioneína/biossíntese , Genes Bacterianos , Glucose/metabolismo , Glutationa/biossíntese , Lactoilglutationa Liase/metabolismo , Oligopeptídeos/biossíntese , Aldeído Pirúvico/metabolismo , Synechocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...